HARVEY AND VIVISECTION

17 May

In 1628 William Harvey, who had received his medical education in Padua (1600-2), where the tradition of Vesalius was still very much alive, published Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus –– an anatomical exercise on the movement of the heart and blood in animals. De Motu Cordis is often regarded as the found- ing text of modern medical science: it is certainly the first text to set out to show that Galen was wrong on a fundamental question of biology. In order to understand its importance we need to look first at Galen’s account of the movement of the blood, and then at Harvey’s. As far as Galen was concerned there were two quite separate sys- tems involving blood in the body. The veins carried blood enriched by food through the body from the liver. This blood was dark in colour, and the tubes it ran through had thin, soft walls (the sole exception being what Galen called the arterial vein, running from the heart to the lungs, which carried dark blood but had the walls of an artery). The arteries carried blood mixed with air through the body from the heart. This blood was bright red in colour, and the tubes it ran through had thick, relatively hard walls (the sole exception being what Galen called the venous artery, running from the lungs to the heart, which carried bright red blood but had the walls of a vein). In the arteries blood washed back and forth, as in a tidal river, carrying life-giving air in one direction, and soot and other waste products in the opposite direction. So too in the veins blood moved both away from the liver (carrying nourishment) and towards it (to be replenished). In the arteries, the blood was moved by the pulsation of the arteries themselves. Galen believed that blood was manufactured in the liver, and consumed in the arteries. Thus there needed to be a slow seepage between the two separate systems, and this took place through the wall, the septum, between the right ventricle and the left ventricle, where small pores permitted the transfer of blood from one to the other. Harvey replaced this account of two separate blood systems, venous and arterial, by what is still the standard modern account according to which the blood flows through two ‘circular’ systems: first, from the right ventricle to the left atrium, by way of the lungs; then from the left ventricle to the right atrium, travelling out through the arteries and back through the veins; a process endlessly repeated. What drove the blood through this double system were the contrac- tions of the right and left ventricles, and the pulse in the arteries was simply the wave of blood expelled from the heart; the arteries them- selves were entirely passive. On Harvey’s account the arterial vein was really an artery because it carried blood under pressure from the heartbeat (even though the blood was venous in colour), while the venous artery was really a vein because it carried blood back to the heart (even though the blood was arterial in colour). It is important to see that there were losses as well as gains in the substitution of Harvey’s account for Galen’s. Harvey could not account for the difference in appearance of venous and arterial blood: Joseph Priestley did not discover oxygen until 1775, so Harvey had no way of understanding that the function of the lungs was to oxygen- ate the blood; he could only argue that the difference between venous and arterial blood was superficial, for if the two were left to stand they became indistinguishable. And Harvey had no account of why the blood needed to flow rapidly through the body: he could merely show that it appeared to do so. For Aristotle and Galen scientific knowledge always included the understanding of what they called ‘final’ causes; that is to say, the purpose served by any natural process. Yet Harvey asked his readers to accept that the blood circulated as he described without being able to explain why it did so. Harvey’s argument depended on four key perceptions. In the order, perhaps, in which they occurred to him, they are: the valves in the veins, the movement of the heart, the quantity of blood leaving the heart, and the evidence that blood in the body was in continuous and unidirectional movement. The valves in the veins had been discovered by Hieronymus Fabricius, a Paduan anatomist whose lectures Harvey had attended while studying medicine at Padua. The only illustration in De Motu Cordis is a straightforward copy of one from Fabricius’s De Venarum Ostiolis (1603). It shows how if you apply a light ligature to the arm you can make the veins stand out and can actually see the valves in them. Moreover you can press the blood along the vein in one direction but not in the other –– the valve effectively blocks all flow away from the heart. Fabricius had failed to understand the significance of this simple experiment. He believed that the valves in the veins prevented blood from pooling in the extremities of the body; but Harvey recognized that what they really showed was that the blood could flow through the veins in only one direction. Realdo Colombo (d. 1559) had already argued that there was a unidirectional flow from right ventricle to left atrium, the pulmonary transit, and Harvey was acquainted with Colombo’s work, although if he was indebted to it he never acknowledges the fact. Second, close study of the exposed beating heart in animals con- vinced Harvey that Galen had misinterpreted the heart’s action: when Galen thought it was contracting it was actually expanding, and vice versa. Harvey watched the heart more closely than Galen had been able to by studying its movement in slow motion in dying mammals and in cold-blooded creatures. An important consequence of this discovery was that Harvey could now see that the heart beats in synchrony with the pulse in the arteries, rather than, as Galen had believed, the two beats being out of step. This opened the way to recognizing that the pulse was merely the heartbeat reflected in the arteries. Third, Harvey saw that if blood was forced out of the heart on each beat, then large quantities of blood must flow through the arter- ies; and if the valves in the heart, like those in the veins, were efficient, then the flow here too must be unidirectional. The consequence was that blood must flow through the system much more rapidly than it could be produced. Where was it coming from and where was it going? The only possible answer was that there was some mechanism for recycling it, that it was going round in a circle. Galen had already argued that arteries and veins were connected at their extremities, for

HARVEY AND VIVISECTION

18. The illustration of the valves in the veins from Harvey’s De Motu Cordis. he knew that if one cut an artery all the blood would be drained out of the veins as well as the arteries. Harvey had only to argue that blood could flow through from arteries to veins by hidden connections to have an account of the circulation of the blood. He had a model in Aristotle’s account of the circulation of water: water evaporates, falls as rain, seeps through the ground, runs in rivers to the sea, evaporates, and so on. Parts of this process –– evaporation and percolation –– are invisible, but one can tell they are taking place, for otherwise the rivers would eventually run dry. Fourth, Harvey appealed to a number of key experiments where one could see this process at work. One had only to cut an artery to see the blood shoot out, and to see that the power of the jet reflected the rhythm of the heartbeat. Where Galenists had taken this copious flow to be a sign of the body’s response to injury, Harvey took the cut in the artery wall as exposing what was going on anyway: the blood flowing rapidly under pressure from the heartbeat. Moreover, the blood always came from the side of the cut closest to the heart if one cut an artery, and from the side furthest from the heart if one cut a vein: Galen knew that this was the case, but he had no explanation for it, and in fact it is impossible to explain until one recognizes that the blood flows in only one direction. Again, when Harvey ligated the vein in the back of a snake, he could see the vein between the ligature and the heart being progressively emptied of blood as the blood was pumped through the heart into the arteries: here was the unidirectional flow of the blood made visible. Harvey’s arguments were simple and, he thought conclusive. But the first argument merely restated Fabricius’s discoveries, and the third was essentially hypothetical. It was his second and fourth arguments that introduced new evidence, and both of these were dependent on experiments on living animals. Harvey’s book begins with a couple of prefaces, an introduction, and a first chapter, subtitled ‘the author’s strong reasons for writing’. He gets down to serious business in chapter 2: ‘The nature of the heart’s movement, gauged from dissection of living animals’. Chapter 3 is entitled: ‘The nature of the movement of the arteries, gauged from dissection of living animals’. Chapter 4: ‘The nature of the movement of the heart and of the auricles [i.e. atria], gauged from dissection of living animals’. Without the dissection of living animals (the word vivisection was not invented until 1702, so that when Harvey discusses ‘dissection’ one always has to check whether he is dissecting the living or the dead –– translations, such as the one I use, which employ the word ‘vivisection’ are anachronistic) Harvey would have had no argument. Vivisection was not new with Harvey. Galen had practised vivisection: one of his favourite public demonstrations was to show that the voice was controlled by the brain not (as Aristotelians believed) by the heart; by slipping loops of thread around the inter- costal nerves he could deprive a squealing pig of its capacity to make a sound, and then restore its voice to it. Vesalius’s successors in Padua had engaged in an extended programme of dissection and vivisection in animals. It is sometimes said that Vesalius himself merely echoes Galen when writing about vivisection and did not perform vivisec- tions himself; but the final chapter of the Fabrica (which has never yet been translated into English) makes it clear that Vesalius thought it best to accompany the dissection of a human corpse with the vivisection of an animal to show the parts of the body in operation. Ideally one should use a pregnant bitch so that one could show the unborn puppies struggling to breathe as soon as the placental blood supply was cut off. Vesalius is perfectly clear that vivisection is a form of torture (the bitch is cruciata, crucified or tortured), but he delights in what it makes visible. Since his book is about the human body there is little place in it for an extended discussion of vivisection; but the opening illustration of the Fabrica shows the tools employed in dissec- tion laid out on a vivisectionist’s table (complete with ropes for tying down a struggling animal), while large initial Q shows a boar being vivisected and small initial Q shows a dog being vivisected. In employing vivisection Harvey was following in a distinguished tradition –– the most striking advances in the understanding of human anatomy had taken place when Herophilus and Erasistratus had vivisected human beings. It is easy to assume that Harvey was doing something funda- mentally new, and that it was that which made his discovery possible. Translations of Harvey frequently use the word ‘experiment’ and so it

HARVEY AND VIVISECTION

19. Large initial letter Q, showing the vivisection of a boar, from the 1555 edition of Vesalius’s De Fabrica. would seem obvious that Harvey was using a modern, experimental method. But in Latin the word experimentum normally means ‘experi- ence’ rather than ‘experiment’ and it is not clear that there is anything new about Harvey’s appeal to experience –– Galen too had performed ‘experiments’. Often one finds Harvey simply following in Galen’s footsteps, as here in the Introduction: If one performed Galen’s experiment, and incised the trachea of a still living dog, forcibly filling its lungs with air by means of bellows, and ligated them strongly in the distended position, one would find, on rapidly opening up the chest, a great deal of air in the lungs right out to their outermost coat, but no trace of such in the vein-like artery or in the left ventricle of the heart. Had Harvey been an admirer of the new science, one would have expected him also to approve of Francis Bacon, whom later gener- ations were to regard as the founder of the new empiricist scientific method. This was far from the case. John Aubrey reports that Harvey had been ‘physician to the Lord Chancellor Bacon, whom he esteemed much for his wit and style; but would not allow him to be a great philosopher. Said he to me: “He writes philosophy like a Lord Chancellor” (speaking in derision).’ Failing a new experimental method, we might assume that what is new is Harvey’s comparative approach, for he studies the heart not only in men and dogs, but also in snakes, frogs, and fishes, and even in the mammalian foetus within the womb (where the blood is spared a pointless journey to the as yet non-functional lungs by taking a short cut from the right to the left side of the heart via an opening, the foramen ovale, which closes shortly after birth). But Galen had con- ducted numerous vivisectional experiments, frequently exposing the heart in living animals; and he had studied the heart not only in men, apes, and dogs, but also in elephants and larks, in snakes and fishes. He had even experimented on the blood flow of unborn mammalian foetuses and knew about the foramen ovale. In any case, the idea of comparative anatomy goes back to Aristotle. It is tempting to argue that it was much easier for Harvey to think in mechanical terms than it was for Galen. Notoriously Harvey dis- covered that the heart is a pump; it is characteristic of seventeenth- century scientists, not ancient Greeks and Romans, we might think, to see nature in terms of machines. It is true that in De Motu Cordis Harvey compares the heart to clockwork or to the firing mechanism of a flintlock pistol, mechanisms of which Galen had no knowledge. But in De Motu Cordis Harvey never compares the heart to a pump: it was only many years later that the sight of a pump on a simple fire engine led him first, in 1649, to compare the heart to a pump, and the arteries to hoses. Aristotle had compared the heart to a bellows, which establishes a unidirectional flow through efficient valves, so Galen could easily have constructed in his mind’s eye an adequate mechanical model of the heart. There was no fundamental obstacle preventing him from seeing that the heart functioned as a pump. Again, it has been argued that quantification is characteristic of seventeenth-century scientists who brought about a new marriage between mathematics and physics, and that it is this which makes it possible for Harvey to puzzle over the amount of blood pumped through the heart and where it goes. In fact the key texts of the new quantitative natural science had yet to be published in 1628 (Galileo’s Dialogue on the Two Chief Systems of the World appeared in 1632); moreover Galen had puzzled, in exactly the same way as Harvey puzzled over the flow of blood, over the amount of liquid which flowed through the kidneys. There was no fundamental obstacle preventing Galen from quantifying the flow of blood through the arteries. In fact, no matter how hard you try (and I say this with feeling, as this is a personal admission of defeat) there is no way of identifying a difference of method or of intellectual equipment that distinguishes Harvey from Galen. Modern scholarship on Harvey is divided between those who think Harvey was a modern and those who think he was an ‘ancient’; the simple answer is that if Harvey is a modern then so too is Galen. Why then did Galen fail to discover the circula- tion of the blood? A wonderfully learned and scholarly book, C. R. S. Harris’s The Heart and the Vascular System in Ancient Greek Medicine, has been written to answer this question. In 455 closely printed pages Harris conclusively demonstrates (against the claims of some scholars) that Galen had no knowledge of the circulation of the blood; but he is still unable to provide any satisfactory account of why such knowledge was unavailable to Galen. In short, there was no major cultural or intellectual gap between Harvey’s world and Galen’s. Where Vesalius’s achievements depended entirely on the new technology of the printing press, Harvey’s discovery could easily have taken place in a manuscript culture. The experimental method, comparative anatomy, mechanical models, quantification, and vivisection are familiar to Galen just as they are to Harvey. What makes this story even more complicated is that Galen was not always mistaken when Harvey claimed that he was. From Vesalius on, anatomists had puzzled over Galen’s claim that there were fine tubes between the left and right ventricles through which blood could seep. Harvey’s argument in part depended on denying the existence of such tubes, and yet they do exist –– a fact that most modern histories of science refuse to acknowledge. Again, in a famous experiment copied from Erasistratus, Galen had attached a tube to a hole cut into the wall of an artery; below the tube, he said, rebutting Erasistratus, the pulse ceased to exist, which Galen inter- preted as evidence that the pulse was a contraction in the wall of the artery. Harvey failed to discuss this experiment in De Motu Cordis, but in a reply to his critics he said that Galen’s experiment was almost impossible to perform because of haemorrhaging. Nevertheless if one did perform it one found that the pulse occurred below as well as above the insertion point of the tube, evidence that it was caused by the flow of blood, not by the artery wall. Attempts to repeat this experiment, from the seventeenth century to the present day, have produced equivocal and contrasting results: there is experimental support for Galen as well as for Erasistratus and Harvey. It is very hard to fault Galen’s powers of observation, even if we now prefer Harvey’s explanations to Galen’s. Galen, for example, describes tying off the two carotid arteries in an animal in order to prove that vital spirits reached the brain through the nose, and not just through the blood. The animal survived and continued to function. Surely Galen had botched his experiment? In the late seventeenth century Thomas Willis discovered what is now called ‘the circle of Willis’, a network of blood-vessels which ensures that even if a carotid artery is blocked, blood still reaches the whole of the brain; both carotid arteries can even be blocked, and a supply of blood can reach the brain through the vertebral artery. Whether that supply could be adequate, and whether Galen had botched his experiment, is a moot point: one medical textbook expresses the view that obstruction of both carotids in a human would ‘probably not be compatible with survival’; the pathophysiology of death by strangulation continues to be controversial, but obstruction to the veins may well be as import- ant as obstruction to the carotid arteries. Perhaps if there had been a continuing tradition of vivisection after Galen, an ancient Roman would have discovered the circulation of the blood some fourteen hundred years before Harvey; certainly once Vesalius had rediscovered Galen’s techniques it took only a century to establish first the pulmonary transit, then the valves in the veins, and finally the circulation of the blood. The important thing to recognize is that, even if an ancient Roman had discovered the circulation of the blood, it would have made virtually no difference to the history of medicine. For Harvey’s revolutionary discovery had only limited implications for medical therapy. The discovery that there was one unified circulatory system meant that there was little point in worry- ing, as doctors were busily doing in the time of Vesalius, about where one should draw blood, as blood drawn from any vein would affect the system as a whole (nevertheless, doctors continued to debate this question in the nineteenth century). And Harvey’s account of circulation made it easier to understand how drugs and poisons could work on the body as a whole, easier too to understand how to use a tourniquet in phlebotomy. But Harvey had no inten- tion of questioning traditional medical therapies: he relied on the worthless therapies of bloodletting, purges, and emetics just as much as all the other disciples of Galen. He claimed to have a better understanding of how traditional therapies worked, not to be offer- ing new ones. Harvey had no intention of transforming the practice of medicine; he intended merely to correct a limited topic in medical theory. Harvey’s new physiology, I have argued, owed everything to vivi- section: it is this, not the experimental method, the mechanical model, or quantification, which made his advances possible. Not surprisingly, what people made of Harvey’s work depended on what they thought of vivisection. Harvey’s critics –– Primrose (1630), Worm (1632), Parigiano (1635), Leichner (1646), Riolan (1648) –– all argued that vivisection could tell one nothing about what happened in a healthy animal, and that it was unacceptably cruel. His supporters –– Walaeus (1640), Conring (1646), Glisson (1653) –– all copied his vivi- sectional experiments and were convinced by them. Riolan is an instructive case in point: he turned reluctantly and halfheartedly to vivisection, and ended up supporting a modified and deeply compromised theory of the circulation of the blood. Harvey’s most important reply to his critics was his Excercitatio Anatomica de Circulatione Sanguinis of 1649, which consists of two essays in reply to Riolan. The second is a sustained reply to ‘those who cry out that I have striven after the empty glory of vivisections’. His response is to urge his readers to engage in vivisections them- selves. ‘All these things you can see in some fairly long artery, such as

HARVEY AND VIVISECTION

20. Vivisection of a dog from J. Walaeus, Epistola Prima de Motu Chyli et Sanguinis (1647). the carotid, that you have cut. You will be able to take it between your fingers and to regulate the outflow of blood, exploring as you wish the increase and decrease, and loss and recovery, of pulsation . . .’ As for Riolan, he only has to engage in ‘a simple experiment’ to discover that he is wrong to deny circulation in the mesenteric veins: In a vivisection, ligate the portal vein near the visceral part of the liver. You will see, from the swelling up of the veins below the ligature, that the same thing is happening as occurs in the administration of a phle- botomy from the placing of a ligature on the arm, revealing the passage of the blood at that point. In the 1970s the Royal Society made a film for schools that repro- duced Harvey’s vivisections. I have met two people who were shown it at school; both told me that they could not bear to watch it all, and that some of their co-students fainted. Harvey was prepared to accept that the final proof of his arguments rested on vivisection. In a letter to one of his critics, Casper Hofman, he writes: ‘since you crave ocular evidence [of] the circula- tion of the blood . . . I now declare to you that I have also seen it clearly with my own eyes, and that I have very often demonstrated it by repeated vivisections to very clear-sighted folk’. All Hofman need do is allow Harvey to perform a demonstration for him, or else ‘investigate by your own efforts in dissection’ (by which, of course, is meant vivisection). This is what Harvey’s sympathetic readers did. Thus the philosopher John Locke devised in the 1650s his own simple experiment to prove circulatio sanguinis: ‘take a frog [and] strip [i.e. skin] it: you may see the circulation of blood if you hold him up against the sun’. In the course of medical discussions such as those provoked by Harvey’s De Motu Cordis something very strange happened to the English language. The word autopsy (from a Latin neologism, autopsia) originally meant to see with your own eyes; but slowly people lost track of its original meaning and began to use it, quite inappropri- ately, to mean a post-mortem dissection. When Harvey says the evidence for the circulation of the blood consists of ‘autopsy or probable proof’ is he using ‘autopsy’ to refer to ‘ocular evidence’ or to dissection? Either way, the vivisectionist’s table had become the paradigmatic experimental space where nature was exposed to view. The year before the publication of Harvey’s De Motu Cordis, an Italian anatomist had announced the discovery of the lacteals in a vivisected dog. Not surprisingly, as Harvey’s arguments became generally accepted (from the 1650s), experiments on living animals became the norm in biological research. The result was the discovery of the thoracic duct and the lymphatics. Boyle’s vacuum pump experiments of 1659 showed that animals such as birds, shrews, snakes, and kittens could no more survive in a vacuum than could naked flames. From 1656 to 1666, Christopher Wren (an anatomist as well as architect), Thomas Willis (who published The Anatomy of the Brain in 1664), and Richard Lower experimented with transfusing various liquids into animals, beginning with poisons and ending up with blood. Willis, for example, injected dyes into living animals in order to stain the blood vessels. Nor were their experiments confined to animals. In 1657 the French Ambassador offered Wren ‘an inferior domestic of his that deserved to have been hanged’ –– though the experiment was abandoned when the servant fainted on the sight of the equipment to be used! In 1666 Lower transfused blood from a lamb into a harmless madman, Arthur Coga. (The directors of the insane asylum of Bedlam had earlier refused to supply any of the inmates for experimental purposes.) Coga survived, but not surpris- ingly, he was not cured of insanity. Shortly afterwards a similar experiment in France resulted in a fatality, and blood transfusions involving humans were for a considerable time abandoned: in the mid-nineteenth century Lister would sometimes offer a transfusion to patients facing death, though how many lives were saved by this means I do not know. The first high point for vivisection was the period 1664–8, when some ninety experiments were reported to the Royal Society, and some thirty conducted in front of its assembled members. In 1664 Robert Hooke, the Royal Society’s professional experimentalist, per- formed a revised version of the Galen/Harvey experiment involving pumping up the lungs of a vivisected dog. Where Galen and Harvey had blocked the windpipe when the lungs were inflated, Hooke attached a pair of bellows to the opened windpipe, and showed that he could keep the dog alive as long as he pumped air into the lungs, even if he removed the rib cage –– thus showing that those (including Harvey) who thought that the mechanical movement of the rib cage played some vital role in sustaining life were quite wrong. For the most part, Hooke’s experiment was met with praise; but Hooke him- self was horrified by what he had done. He announced that ‘I shall hardly be induced to make any further trials of this kind because of the torture of the creature; but certainly the enquiry would be very noble, if we could find any way so to stupefy the creature, as that it might not be sensible, which I fear there is hardly any opiate will perform.’ Around the same time, in Micrographia (1665), he praised the use of the microscope as enabling one to look at nature ‘acting according to her usual course and way, undisturbed, whereas when we endeavour to pry into her secrets by breaking open the doors upon her, and dissecting and mangling creatures whilst there is life yet within them, we find her indeed at work, but put into such disorder by the violence offered’ that we cannot tell if the results are of any significance. This debate persists. Despite his reservations, in 1667 Hooke agreed to perform (he was after all an employee), with Lower’s assistance, a more advanced form of the thoracic experiment in front of the Royal Society. This time an incision was to be made in the dog’s lungs so that the air pumped in by the bellows would flow straight through them, and two bellows were to be put to work so that the flow of air was continuous –– the lungs would thus remain entirely stationary. The experiment was carried out, and proved that movement in the lungs was not necessary to their function. John Evelyn, the diarist, was present and found the experiment ‘of more cruelty than pleased me’. In a later version of the experiment, Lower opened the pulmonary vein, and showed that blood returning from the lungs to the heart was already an arterial red. It is sometimes said that people in the seventeenth century had no notion of cruelty to animals, and Descartes even argued that animals are mere machines, incapable of feeling pain. It is also said that there was so much cruel treatment of one human being by another in the seventeenth century that what was done by the vivisectionists to animals would scarcely have seemed horrendous. But Hooke and Evelyn were not alone in finding certain vivisections repugnant. The Danish naturalist Nicholas Steno wrote to Thomas Bartholin in 1661 expressing his dismay at the vivisecting of dogs: ‘I must admit that it is not without abhorrence that I torture them with such prolonged pain.’ And after the 1690s, anti-vivisectionist sentiments were commonly expressed in France and England. Modern historians of science celebrate the ‘discoveries’ of Wren, Willis, Lower, Boyle, and Hooke: the first intravenous injections, the first blood transfusions, the first anatomy of the brain, the first account of the physiology of respiration. It is worth stressing that, as with Harvey’s discovery of the circulation of the blood, this extended programme of animal vivisection had no therapeutic benefits. Not a single life was saved, not a single illness abbreviated. Historians have been very reluctant to face the fact that vivisection (and not something apparently harmless, such as ‘the experimental method’) was the true foundation of the new physiology. Similarly, they have sought to play down the extent to which the new anatomy, which arose out of dissection, depended on activities (such as the boiling up of bodies) that even the leading participants felt were abhorrent. Above all, they have sought to downplay the fact that all this new knowledge was entirely useless, in that it led to only minor and marginal changes in therapy. For example Willis, the first specialist in brain anatomy, treated epilepsy with emetics to induce vomiting, with leeches, with peony roots and wolves’ livers, and with amulets filled with mistletoe. He had (to borrow his own words) ‘slain so many vicitims, whole hecatombs almost of all animals, in the anato- mical court’, and yet had nothing practical to show for it. Still, his experiments stood him in good stead: ‘He became so noted, and so infinitely resorted to, for his practice,’ wrote Anthony Wood, ‘that never any physician before went beyond him, or got more money yearly than he.’

Random Posts

Comments are closed.